
Rust-GCC Philip Herron
Arthur Cohen

Summary

● Project recap
● Current status
● Compiling Rust-for-Linux using gccrs

○ Requirements
○ Adding it to our testing project

What is Rust GCC?

● Full Implementation of Rust on top of GNU Toolchain
○ Project originally started in 2014, revived in 2019

■ Progress stalled with the frequency of language changes
○ Two full time engineers

■ Receives contributions from many GCC and non GCC developers
○ Thanks to Open Source Security, inc and Embecosm

Motivations of Rust GCC

● Upstream with mainline GCC
● Reuses the GNU toolchain (ld, as, gdb)
● Reusing official Rust libcore, libstd, libproc
● Alternative implementation of Rust
● GCC Plugins support

○ LTO and CFI
● Drive adoption of Rust through backporting
● Backend support for more systems
● https://github.com/Rust-GCC/gccrs/wiki/Frequently-Asked-Questions

https://github.com/Rust-GCC/gccrs/wiki/Frequently-Asked-Questions

Current status

● Const generics
● Intrinsics
● Borrow-checking
● Working towards running the rustc test-suite
● Target an older version of libcore
● A first experimental release should be available in GCC 13 (next release)

Compiling RfL with gccrs

● Rust 1.62!
● Compiler flags

○ Improve our cargo_gccrs wrapper
○ Reuse rustc’s argument parsing library
○ Pull requests welcome!

● libcore
○ Currently targeting 1.49
○ Too old for Rust-for-Linux

● liballoc
○ Custom?
○ Depends on libcore

Rust version differences

● What does it mean?
● Few language differences
● Mostly library differences (additions to core, std)
● Lots of hidden additions

○ Nightly APIs
○ Unstable attributes, macros, intrinsics
○ That RfL probably relies on
○ …right?

Rust version differences

Testing project

● Tries compiling various projects using gccrs
○ blake3 cryptography library
○ libcore 1.49
○ All the valid cases from the rustc testsuite

■ in #[no_std] mode
■ in #[no_core] mode

● Eventually add RfL to it!

Community

Get Involved

● Goal is to make working on compilers fun
○ Lots of good-first-pr issues to work through

■ Refactoring work
■ Bugs

○ Lots of scope to make your mark on the compiler
● Google Summer of Code 2021 and 2022
● Status reporting

○ Weekly and Monthly
○ Shout out to contributors
○ Open and transparent

● Monthly Community Call
○ 1st Friday of the Month 09h00 UTC
○ Open to everyone who is interested
○ Hosted on Jitsi

Future Work

● Cross Compiler Testing Project
○ Compare Rustc vs Rust GCC

■ Error diagnostics
■ Code Size
■ Energy Efficiency
■ Benchmarking

● Language Standardization
○ Integration with the Rust community
○ crater runs

■ Automate testing Rust GCC against code from https://crates.io/

Links

● Github: https://rust-gcc.github.io/
● Reports: https://github.com/Rust-GCC/Reporting
● Email: philip.herron@embecosm.com
● Zulip: https://gcc-rust.zulipchat.com/
● IRC: irc.oftc.net #gccrust
● https://gcc.gnu.org/mailman/listinfo/gcc-rust

https://rust-gcc.github.io/
https://github.com/Rust-GCC/Reporting
https://gcc-rust.zulipchat.com/
https://gcc.gnu.org/mailman/listinfo/gcc-rust

Special Thanks

● Brad Spengler
○ https://opensrcsec.com/

● Jeremy Bennett
○ https://www.embecosm.com/

● David Edelsohn
○ https://gcc.gnu.org/steering.html

https://opensrcsec.com/
https://www.embecosm.com/
https://gcc.gnu.org/steering.html

Questions?
www.embecosm.com

